Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
Retargeting human motion to robot poses is a practical approach for teleoperating bimanual humanoid robot arms, but existing methods can be suboptimal and slow, often causing undesirable motion or latency. This is due to optimizing to match robot end-effector to human hand position and orientation, which can also limit the robot's workspace to that of the human. Instead, this paper reframes retargeting as an orientation alignment problem, enabling a closed-form, geometric solution algorithm with an optimality guarantee. The key idea is to align a robot arm to a human's upper and lower arm orientations, as identified from shoulder, elbow, and wrist (SEW) keypoints; hence, the method is called SEW-Mimic. The method has fast inference (3 kHz) on standard commercial CPUs, leaving computational overhead for downstream applications; an example in this paper is a safety filter to avoid bimanual self-collision. The method suits most 7-degree-of-freedom robot arms and humanoids, and is agnostic to input keypoint source. Experiments show that SEW-Mimic outperforms other retargeting methods in computation time and accuracy. A pilot user study suggests that the method improves teleoperation task success. Preliminary analysis indicates that data collected with SEW-Mimic improves policy learning due to being smoother. SEW-Mimic is also shown to be a drop-in way to accelerate full-body humanoid retargeting. Finally, hardware demonstrations illustrate SEW-Mimic's practicality. The results emphasize the utility of SEW-Mimic as a fundamental building block for bimanual robot manipulation and humanoid robot teleoperation.
Aggregation query over free text is a long-standing yet underexplored problem. Unlike ordinary question answering, aggregate queries require exhaustive evidence collection and systems are required to "find all," not merely "find one." Existing paradigms such as Text-to-SQL and Retrieval-Augmented Generation fail to achieve this completeness. In this work, we formalize entity-level aggregation querying over text in a corpus-bounded setting with strict completeness requirement. To enable principled evaluation, we introduce AGGBench, a benchmark designed to evaluate completeness-oriented aggregation under realistic large-scale corpus. To accompany the benchmark, we propose DFA (Disambiguation--Filtering--Aggregation), a modular agentic baseline that decomposes aggregation querying into interpretable stages and exposes key failure modes related to ambiguity, filtering, and aggregation. Empirical results show that DFA consistently improves aggregation evidence coverage over strong RAG and agentic baselines. The data and code are available in \href{https://anonymous.4open.science/r/DFA-A4C1}.
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
Visualization's design knowledge-effectiveness rankings, encoding guidelines, color models, preattentive processing rules -- derives from six decades of psychophysical studies of human vision. Yet vision-language models (VLMs) increasingly consume chart images in automated analysis pipelines, and a growing body of benchmark evidence indicates that this human-centered knowledge base does not straightforwardly transfer to machine audiences. Machines exhibit different encoding performance patterns, process images through patch-based tokenization rather than holistic perception, and fail on design patterns that pose no difficulty for humans-while occasionally succeeding where humans struggle. Current approaches address this gap primarily by bypassing vision entirely, converting charts to data tables or structured text. We argue that this response forecloses a more fundamental question: what visual representations would actually serve machine cognition well? This paper makes the case that the visualization field needs to investigate machine-oriented visual design as a distinct research problem. We synthesize evidence from VLM benchmarks, visual reasoning research, and visualization literacy studies to show that the human-machine perceptual divergence is qualitative, not merely quantitative, and critically examine the prevailing bypassing approach. We propose a conceptual distinction between human-oriented and machine-oriented visualization-not as an engineering architecture but as a recognition that different audiences may require fundamentally different design foundations-and outline a research agenda for developing the empirical foundations the field currently lacks: the beginnings of a "machine Bertin" to complement the human-centered knowledge the field already possesses.
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
Characterisation of structural discontinuity sets in exposed rock faces of underground mine cavities is essential for assessing rock-mass stability, excavation safety, and operational efficiency. UAV and other mobile laser-scanning techniques provide efficient means of collecting point clouds from rock faces. However, the development of a robust and efficient approach for automatic characterisation of discontinuity sets in real-world scenarios, like fully enclosed rock faces in cavities, remains an open research problem. In this study, a new approach is proposed for automatic discontinuity set characterisation that uses a single-shot filtering strategy, an innovative cyclic orientation transformation scheme and a hierarchical clustering technique. The single-shot filtering step isolates planar regions while robustly suppressing noise and high-curvature artefacts in one pass using a signal-processing technique. To address the limitations of Cartesian clustering on polar orientation data, a cyclic orientation transformation scheme is developed, enabling accurate representation of dip angle and dip direction in Cartesian space. The transformed orientations are then characterised into sets using a hierarchical clustering technique, which handles varying density distributions and identifies clusters without requiring user-defined set numbers. The accuracy of the method is validated on real-world mine stope and against ground truth obtained using manually handpicked discontinuity planes identified with the Virtual Compass tool, as well as widely used automated structure mapping techniques. The proposed approach outperforms the other techniques by exhibiting the lowest mean absolute error in estimating discontinuity set orientations in real-world stope data with errors of 1.95° and 2.20° in nominal dip angle and dip direction, respectively, and dispersion errors lying below 3°.
Contemporary large language model (LLM)-based multi-agent systems exhibit systematic advantages in deep research tasks, which emphasize iterative, vertically structured information seeking. However, when confronted with wide search tasks characterized by large-scale, breadth-oriented retrieval, existing agentic frameworks, primarily designed around sequential, vertically structured reasoning, remain stuck in expansive search objectives and inefficient long-horizon execution. To bridge this gap, we propose A-MapReduce, a MapReduce paradigm-inspired multi-agent execution framework that recasts wide search as a horizontally structured retrieval problem. Concretely, A-MapReduce implements parallel processing of massive retrieval targets through task-adaptive decomposition and structured result aggregation. Meanwhile, it leverages experiential memory to drive the continual evolution of query-conditioned task allocation and recomposition, enabling progressive improvement in large-scale wide-search regimes. Extensive experiments on five agentic benchmarks demonstrate that A-MapReduce is (i) high-performing, achieving state-of-the-art performance on WideSearch and DeepWideSearch, and delivering 5.11% - 17.50% average Item F1 improvements compared with strong baselines with OpenAI o3 or Gemini 2.5 Pro backbones; (ii) cost-effective and efficient, delivering superior cost-performance trade-offs and reducing running time by 45.8\% compared to representative multi-agent baselines. The code is available at https://github.com/mingju-c/AMapReduce.